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An asympto t ic  solution has been obtained for  the s y s t e m  of boundary l ayer  equations with in- 
tense injection of a foreign absorbing  substance for  optical ly thick and thin boundary l aye r s  
taking account of the influence of a magnetic  field. Analytical  fo rmulas  a r e  p resen ted  which 
pe rmi t  computat ion of the t e m p e r a t u r e ,  concentrat ion,  and heat flux prof i l es .  

The s y s t e m  of l am i na r  boundary l aye r  equations for  radiat ing gas flow around a plane or a x i s y m m e t r i c  
body is  examined.  The  fore ign absorbing gas ,  driving back  the external  s t r e a m ,  is injected intensively 
through the body s u r f ace .  It  is cons idered  that the injection intensity is not too g rea t  so  that the p r e s s u r e  
does not change a c r o s s  the boundary l a y e r .  In such case ,  the flow is descr ibed  by the s y s t e m  of boundary 
l aye r  equations which is for  a b inary  mixture  without taking account of the work  of the p r e s s u r e  f o r c e s ,  
the Joulean  and viscous  diss ipat ion,  the chemical  reac t ions ,  and under the assumpt ion  that the specif ic  heat 
deponds s l ight ly on the t e m p e r a t u r e  [1-3]: 
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Indeed, under intensive injection the influence of v i scos i ty  is manifes ted  in the neighborhood of the junction 
of the s t r e a m s  in the domain 6 ~ L/Rv"~~. 

The  thickness  of the internal  flow domain A can be de te rmined  f r o m  the continuity equation u / L  ~ v w 
/ A  and the equali ty of the p r e s s u r e s  on the in ter face  pw u2 ~ p ~U~.  

The influence of the v i scos i ty  will be essen t ia l  only in a smal l  domain as compared  with the whole 
inner zone (6 << A) if 1 / v ~ - ~  << (vw/Uoo)~-'~/p ~.  At the same  t ime,  the injection cannot be a r b i t r a r i l y  g rea t  
s ince it follows f r o m  the N a v i e r - S t o k e s  equations that 8p/gy ~ A / L .  ~p/~x. 

T h e r e f o r e ,  if A2 << L ~, meaning PwVw 2 << p~U~,  then the p r e s s u r e  change a c r o s s  the boundary l aye r  
cannot be taken into account and the s y s t e m  of equations takes  the f o r m  (1). 

The s y s t e m  (1) is supplemented by the following boundary conditions 

tt = 0, v = v~, T = Tw, c = c w for y = 0, u = ue, T ~ T~., c = c| for y ~ oo.  (2) 

The veloci ty  on the outer  edge of the boundary l ayer  u e = Ax is indeed de te rmined  f r o m  the solution 
of a p r o b l e m  about ex terna l  inviscid flow. These  solutions a r e  known for  incompress ib le  fluid flow around 
a cyl inder  or  sphe re  in the absence  of a magnet ic  field [4]. The question of the change in the veloci ty  g r a -  
dient A on the outer  edge of the boundary l aye r  in the p r e sence  of a magnet ic  field with l ines of force  in the 
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f r e e  s t r e a m  direct ion has been studied in [5, 6]. In the opinion of the authors  of [5, 6], the constant A in the 
p resence  of a field is re la ted  with the corresponding value A 0 in the absence of a field by the relat ionship 
a = A0/,/1 + s. 

By using se l f - s imi l a r  t ransformat ions  [2, 3], which a re  in the neighborhood of the forward  stagnation 
point of a plane or  ax i symmet r i c  body 

y 

o.~ A x 2+2k, ~1 = V ~ f i - - j '  ~ dy, (3) 

0 

and the assumption that p# = P,o#~o, the Eqs.  (1) reduce  to a sys tem of ord inary  differential  equations 

dn - - ~ -  ~-~ T ~\dn -- ~-n o, (4) 
. . . .  dQ d 1 dO @fdO + _ _  =0,  (5) 

d~l ,Prm d~l d~l d~l 
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where  
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The boundary conditions (2) become 

df f=:=, ~ s  ~or n=0, 

d'f = C : , = O ~ , = I  for ~l-+ao. 
dn 

(7) 

The sys tem of Eqs.  (4)-(6) with the boundary conditions (7) without taking account of a magnetic field 
was solved numer ica l ly  for  a hypersonic  flow in [7-9], and for  subsonic flow with an external  source  of r ad ia -  
tion and injection of an incomprew fluid, in [10]. An asymptot ic  solution has been obtained in [11, 12] 
for  the sy s t e m  (4), (5) without taking account of radiat ion and a magnetic field under intensive injections 
(-fw >> 1). An asymptot ic  solution of the sys tem (4)-(6) for  intensive injection of a foreign absorbing gas 
is p resen ted  below taking account of the influence of a magnetic field. 

1. Following [12] let us introduce the var iables  

z = l  d f ]  2, F - -  [ 
\ d~) L 

Then the sys tem (4)-(6) becomes 

1--~- V-~-d~-7 + F - f f  + 2A l + S (  1 - - - -  VZ Z --0, 
(Im 

1 d (~r~ .__dO) dO 1 dQ O, (8)  
f~ - -~  v z - j  + r ~ - +  f~ dP 

s -~-f V ~ - ~  +F dF 

The boundary conditions a re  

Z = 0 = C = 0  for F = I ; Z = O = C ~ I  for F--)-e~. (9) 
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Under intensive injection (-fw >> 1) the solution of the sys tem (8) can be sought as a power ser ies  in 
the pa rame te r  1/f w. To the accuracy  of t e rms  on the order  of 1/fw, there follows f rom (8) 

F-~-+2A I+S  1 ]/-Z --Z =0, (10) 

F d_O_O =0, F dC =0. (11) 
dF dF 

Equations (11) and the boundary conditions (9) permit the assertion that the temperature and concen- 
tration are constant everywhere outside the domain of the stream junction, where terms with higher deriva- 
tives turn out to be essential  in the general  case.  Therefore ,  for - f w  --*~~ in the whole inner domain (f < 0) 
it can be considered that 0 = C = 0, i.e., the gas tempera ture  equals the wall tempera ture ,  and the concen-  
t ra t ion equals the concentration of the injected gas ,  in the outer domain (f > 0), analogously we have 0 = C 
= 1 .  

Fur the rmore ,  the boundary condition Z = 0 for  F = 1 should be chosen in seeking the s t r eam function. 

As is shown below, neglecting the higher derivatives does not result  in noticeable e r r o r  in the whole 
internal  domain, with the exception of a small  neighborhood of the s t r eam junction. Then, under the condi- 
tion that the e lect r ical  conductivity in the whole inner zone is small  (a w << a,o), we obtain f rom (10) 

z = ~; (1 - -F~") ;  ~ - 

There fo re  

7on 7 0 
f=f~cos-~- for A=I; f--f~ 4/~, for A=0,5. 

From (12) it follows from p~(1 + S) = Pw that df/d~ = 1 at the stream junction (7 = k). 

In the external domain (~? > k), the solution of the motion equation 

ev +:  dr. +A[ ,--fell'l=0 
d)l a d)] 2 } d)l ] j 

with the boundary conditions 

(12) 

(13) 

f = 0 ,  dr _ 1 for t l=~, df =1  for ~- -~o ,  (14) 
dn d~ 

should be sought. 

Evidently the solution of (13) satisfying the boundary condition s (4) is 

f = n--~. (15) 

If p.o(1 + S) ~ Pw, then a domain where the transi t ion f rom df/d~ defined by (12) to the value df/d~ =1a t  
~---~ occurs ,  exists in the neighborhood of ~ = ~. Seeking the solution in the neighborhood of the s t r eam 
junction is made complicated by the dependence of p and a on 0 and C. As is seen f rom (5, (6), the main 
change in the tempera ture  and concentration occurs  at the distances ~ - k  '~ 1 / ~ u  and ~ - ~  ,,, 1/~/-S~. r e spec -  
t ively.  

Putting ~ >>max (1.1/v~-~, 1/4"~) ,  it can be considered in determining ~ in a f i rs t  approximation 
that the s t r eam function in the whole internal domain is descr ibed by (12) and inthe external domain by (15). 

There fore ,  

~, = - -  ~fu,/7o (~ = 1 for A = 1, ~ = 2 for A = 0.5). (16) 
2 

It follows f rom (16) that the boundary of the standoff k in se l f - s imi la r  coordinates diminishes as the 
magnetic interaction pa rame te r  grows for  r w << aor 

It should be noted that the s t r eam function described by (12), (15) for  A = 0.5, p = p~, S = 0 is an exact 
solution of (4). For  A = 1 neglecting the highest derivative in (4) resul ts  in an e r r o r  in the internal domain 
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on the o rder  of 

I / p~ (s in  ~1 ~'-- 
Hence, it follows that the influence of v i scos i ty  turns  out to be negligible near  the wall  and is mani -  

fes ted  only in the neighborhood of the s t r e a m  junction in the domain 171-k I ~ (Pw/P~)I/4. 
2. In the radia t ion heat conduction approximat ion  [13-15], heating of unit volume because  of radia t ion 

dqr/dY can be combined with the heat influx due to molecu la r  heat conduction, and it can be cons idered  that 
P r  << 1. The condition for  appl icabi l i ty  of this approximat ion  is l(d~/dy) << 1 / - / - ~ ,  where  l is the radiat ion 
mean  f ree  path, and dy/d~? �9 1/v~-~ " is the cha r ac t e r i s t i c  sca le  within which the t e m p e r a t u r e  changes .  

If the t e m p e r a t u r e  O k at the s t r e a m  junction is cons idered  known, then it follows f r o m  (5) that the 
t e m p e r a t u r e  gradient  at the wall  equals 

n 

0 0 

Assuming  that Prf2w >> 1 and the s t r e a m  function is de te rmined  by (12) in the whole domain 0 <~ < X, 
we can obtain 

(dO)~ w = 20~ V PrT~ exp( ~,Prf~ ) 7 o  ' (18) 

where  fit = 1 for  A = 1; fll = 4 /3  for  A = 0.5. 

The locat ion of the s t r e a m  junction is de te rmined  with a r e l a t ive  e r r o r  on the o rde r  of ( 1 / k ~ 0 )  
(1-Yo/y) ,  where  y is the der iva t ive  of the s t r e a m  function at the s t r e a m  junction, defined in conformi ty  
with (4), (5). This  e r r o r  or ig ina tes  because  the s t r e a m  function in the domain ~ - X  ~ 1/4"P--~ has a slope 
different  f r o m  the Y0 calculated by means  of (12) because  of the change in densi ty and v i scos i ty .  

The exponent of the exponential  in (18) is de te rmined  to the accu racy  of t e r m s  on the o r d e r  of 
1/2(1-70/7). 

A model assuming piecewise-constant properties of the medium is too rough to compute the tempera- 
ture 0 and concentration C because the main change in the quantities 0 and C occurs in the neighborhood of 
the stream junction where it is necessary to know the exact behavior of the stream function in the general 
ease .  

If the change in densi ty  is due mainly to the change in t e m p e r a t u r e ,  then as is seen  f r o m  (4) and (5), 
for  P r  << 1 it should be cons idered  that 

( f /__701_)~) 73 = 9 ~  I + S  1 - -  (19) 
P~ L a~ 

in the domain of g r e a t e s t  change in the t e m p e r a t u r e  ( l~-k l  ~ 1 / 4 - ~ ) .  

In the gene ra l  case ,  the change in the s t r e a m  function in the neighborhood of the s t r e a m  junction is due 
to the change in densi ty with t e m p e r a t u r e  and to the influence of v i scos i ty ,  

A computat ion of the t e m p e r a t u r e  by using the s t r e a m  function in the f o r m  (19) shows that 

0 = 

(20) 

�9 (x) = f o x p f -  dt . 
1 / ~ - J  ~ / 

T h e r e f o r e  the dependence of the densi ty on the coordinate  ~ is de te rmined  by the a rgument  (~-X) P ~ ,  

As has been shown e a r l i e r ,  the influence of the v i scos i ty  is mani fes ted  in a cons iderably  s m a l l e r  do-  
main I~-)tl  ~ 1. Outside the v iscous  boundary l aye r  domain,  where  the main  change in densi ty 1 < I~ 
- k l  < 1 / P ~  occurs ,  the o r d e r  of magnitude of the d iscarded  t e r m s  in (4) can be e s t ima ted .  Assuming  that 
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F i g . 1 .  T e m p e r a t u r e  d i s t r ibu-  
t ion fo r  the ease  Tw/ T ,o  = 0.1, 
A = 1, fw = - 2 :  1) by (23) (first  
approximat ion) ;  2) by (23) (sec-  
ond approximation);  3) by [12]. 

the s t r e a m  function in this domain co r r e sponds  to (19) in o rder  of 
magnitude,  it should be cons idered  that the exact  solution of (4) will 
depend on the s a m e  argument  as the density,  i .e. ,  0?-k)4--P-F~. 
F u r t h e r m o r e ,  s ince f ~ ' / (~  -X) ,  df/d~? ~ 3/, then d2f/d~ 2 ,~ Y v'-P--r-Y, d af 
/d~73 ~ PrT 2. Then inthe  domain under  considerat ion 

d3f / ( A ]* ~ Pr, f d*f / ( d/ I ~ ~ Ol-- ~,) ]/ Pr~/. 
d~l 8 / \ d~l ] drl ~ / \ d~l J 

Hence, it is seen  that in the domain of g r ea t e s t  change in t e m -  
p e r a t u r e  the s t r e a m  function in (4) is a lmos t  l inear  with a coefficient 
y de te rmined  in conformity  with (19). 

It  follows f r o m  (20) that for  intensive injections X4"P-rxy >> 1 
at the in ter face  

1 ( d O )  = ] / / -  Pr~Y (21) 
0(~,)------~, ~ _  ~ 2~ 

In conformi ty  with (18) and (21), the magnitude of the  heat flux can be de te rmined  approx imate ly  as 
follows: 

(22) 

I t  follows f r o m  (22) that as the injection p a r a m e t e r  grows,  as does also the Prandt l  number  of the 
injected gas ,  the heat flux at the wall  d e c r e a s e s  exponentially and if a)t << a.o, then taking into account that 
f2 w ,~ ,/T-+"~, will be independent of the magnetic  in teract ion p a r a m e t e r  S. 

Resul ts  of a computat ion by means  of (20) for  the case  P r  = 1, Tw/T.o = 0.1, A = 1, fw = -2  a r e  shown 
in Fig .  1. The  model of p iecewise -cons tan t  p r o p e r t i e s  which yields a somewhat  exaggera ted  value of )t was 
used  in a f i r s t - . approximat ion  calculat ion.  Taking into account the t e m p e r a t u r e  dis tr ibut ion obtained, and 
t he r e fo re ,  the densi ty a lso ,  the value of X in a second approximat ion is de te rmined  by means  of (16) with 
Pw rep laced  by <p} : 

< p >= -~- Pdn. 
0 

Even in the case  when the conditions P r  << 1, - fw >> 1 a re  not sa t is f ied,  a t e m p e r a t u r e  computat ion 
by  means  of (20) ag rees  sa t i s fac to r i ly ,  as is seen f r o m  Fig.  1, with the r e su l t s  obtained e a r l i e r  [12]. 

3. If the radia t ion mean f r ee  path is commensura t e  with or  exceeds the d imension of the internal  
domain (l ~ A), then heating of a g r a y g a s  because  of radia t ion for  the one-dimensional  case  and a b lack  wall  
is de te rmined ,  as is known, by a known integral  re la t ionship  [13, 14]. 

Under intensive injection of a weakly absorbing  gas ,  the t e m p e r a t u r e  dis tr ibut ion in the inner  zone is 
due mainly  to radia t ion and convection.  Molecular  heat conduction exe r t s  influence on the t e m p e r a t u r e  d i s -  
t r ibut ion only. in the s t r e a m  junction domain.  In this case ,  the main t e m p e r a t u r e  drop occurs  at the d i s -  
t ances  1~7-X I ~ 1/d 'P-rm(Prm " 1). It is a s sumed  that heating of the injected gas  and diffusion in the domain 
of the s t r e a m  junction do not a l t e r  the radia t ion mean f ree  path substant ia l ly  in the in ternal  domain.  

If  the radia t ion mean f r ee  path sa t i s f i es  the condition l (d~/dy) >> 1/P(P'-rm, then radia t ion f r o m  the wall  
and f r o m  the gas into the whole in ternal  domain can be neglected.  Then the above-ment ioned  in tegra l  r e l a -  
t ionship become s  

o ~  

dy " v tn ] 
1 

where  T .  is the radiat ion t e m p e r a t u r e  which can be se t  equal to T x s ince it is considered that the radia t ion 
mean  f r ee  path  in the externa l  domain sa t i s f i es  the condition l(d~//dy) << 1 / 4 " ~ r  (Pr r << 1). The condition of 
equali ty of the no rma l  heat  flux components  on the in te r face  01 = X) means  that the heat a r r iv ing  f r o m  the 
ex te rna l  domain of radia t ion heat conduction at the inner zone is t r anspor t ed  by the molecu la r  heat conduc- 
t ion and radia t ion:  
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Since ~ r  >> ~ m  then the heat t r anspo r t  because  of molecu la r  heat conduction can be neglected in the bound- 
a r y  condition (23). 

Indeed, nm(dT/dy)?~_Jnr(dT/dy)h+0 ~ ~ / n r .  Then condition (23) becomes  

The solution in the in ternal  domain (~ > k) can be found by consider ing the s t r e a m  function l inear  (19), 
and the t e m p e r a t u r e  on the boundary to be equal to 0X: 

0 ~ 0 x -':- (1  - -  0 x )  W [(n  - -  )~) 1/Pr~ ~ 1. 

Hence it follows that 

/ -  Prr V 

Consider ing ~t r = 16/3~o1T~, we obtain an equation to de te rmine  0 x f r o m  the boundary condition (24)- 

0~= 32/3e/, 2~-- Tw/(T~-- T.,) ( _! (_~y ) V-fi~rr?) 
1 +32/3 e/V 2~ e 

(2S) 

Hence,  it is seen  that as ~ i n c r e a s e s ,  the t e m p e r a t u r e  on the in ter face  0 x r i s e s .  However ,  the condi-  
t ion for  appl icabi l i ty  of the radia t ion heat conduction approximat ion  demands that ~ << 1. Hence 0 x cannot 
exceed the value 0 h ~ 0.8 cor responding  to e = 1. To solve (25) it is n e c e s s a r y  to know the dependence of 

on 0 h.  For  sma l l  values  of 0h the  condition a << 1 may not be sa t i s f ied .  

Neglect ing molecu la r  heat conduction in the whole in ternal  domain,  the energy equation can be r e -  
p resen ted  as 

2AaaoT~ ) . (26) 

The t e m p e r a t u r e  dis t r ibut ion nea r  the su r f ace  (~/2 << h2) can be obtained f r o m  (26): 

O- %fw~k { E ~ [ ~ (  1 -  ~1 ) ] - - E 3 ( ~ ~  " 

The heat flux on the wall  is de te rmined  not only by the radia t ion flux but a lso  by heat t r anspor t  by 
molecu la r  heat conduction f r o m  the gas heated by radiat ion:  

q = 2 %  x Ea(~w)+ E 2(~.,) . (27) 
PwCpVm 

I t  is seen  f r o m  (27) that heat t r a n s p o r t  because  of molecu la r  heat conduction diminishes  by a power  law as 
the injection g rows .  The total  heat  flux depends essen t ia l ly  on the t e m p e r a t u r e  on the s t r e a m  junction 
boundary.  

N O T A T I O N  

P 
Cp 

L 
rim, n r  
D 
U ,  V 

p 
T 
C 

is the density; 
is the specif ic  heat; 
is the dynamic v iscos i ty ;  
is the c h a r a c t e r i s t i c  length scale ;  
a r e  the coefficients  of molecu la r  and radiant  heat  conduction; 
is the coefficient  of diffusion of a b inary  mixture ;  
a r e  the longitudinal and no rm a l  veloci ty  components ,  respec t ive ly ;  
is the p r e s s u r e ;  
is the t e m p e r a t u r e ;  
is the concentrat ion;  
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qr is the radiation flux; 
B is the induction of the magnetic field whose lines of force are in the free s t ream direction 

(the magnetic Reynolds number is considered small); 
a is the electrical conductivity; 
x is the distance along the surface from the forward stagnation point of the body; 
y is the distance along the normal; 
r 0 is the radius of t ransverse curvature of the body surface; 
k = O, A = 1 is the plane case; 
k = 1, A = 0.5 is the axisymmetric case; 
Re = pUL/~ is the Reynolds number; 
Pr  = # Cp/~ is the Prandtl number; 
Sc = ~/D is the Schmidt number; 
S = a,~B2/p~cA is the Stuart number; 
o'0 is the Stefan-Boltzmann constant; 

is the absorption coefficient; 
l is the radiation mean free path; 
r = ~y is the optical thickness. 

S u b s c r i p t s  

w is the wall; 
is the s t ream junction point; 
is the outside the boundary layer.  
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