FLOW IN A LAMINAR BOUNDARY LAYER UNDER
INTENSIVE INJECTION AND RADIANT
HEAT EXCHANGE

A, M, Golovin and 1’?. D, Sergievskii UDC 532.,517:536.3

An asymptotic solution has been obtained for the system of boundary layer equations with in-
tense injection of a foreign absorbing substance for optically thick and thin boundary layers
taking account of the influence of a magnetic field, Analytical formulas are presented which
permit computation of the temperature, concentration, and heat flux profiles,

The system of laminar boundary layer equations for radiating gas flow around a plane or axisymmetric
body is examined, The foreign absorbing gas, driving back the external stream, is injected intensively
through the body surface, It is considered that the injection intensity is not too great so that the pressure
does not change across the boundary layer. In such case, the flow is described by the system of boundary
layer equations which is for a binary mixture without taking account of the work of the pressure forces,
the Joulean and viscous dissipation, the chemical reactions, and under the assumption that the specific heat
depends slightly on the temperature [1-3]:
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Indeed, under intensive injection the influence of viscosity is manifested in the neighborhood of the junction
of the streams in the domain 6 ~ L/vRe,. '

The thickness of the internal flow domain A can be determined from the continuity equation u/L ~ vy
/A and the equality of the pressures on the interface pwu2 ~ poU%.

The influence of the viscosity will be essential only in a small domain as compared with the whole
inner zone (§ < 4) if 1/VRe, < (vw/Uw)\/pw/ Po. At the same time, the injection cannot be arbitrarily great
since it follows from the Navier ~Stokes equations that 8p/8y ~A/L - p/8x.

Therefore, if A? < L2, meaning py,vy,® <« PuU%, then the pressure change across the boundary layer
cannot be taken into account and the system of equations takes the form (1),

The system (1) is supplemented by the following boundary conditions
a=0,v=u0, T=T,, c%cl; forv-y=0, =t, T="Ta, t=¢Cs for y—>oo. 2)
The velocity on the outer edge of the boundary layer ug = Ax is indeed determined from the solution
of a problem about external inviscid flow, These solutions are known for incompressible fluid flow around

a cylinder or sphere in the absence of a magnetic field [4]. The question of the change in the velocity gra~
dient A on the outer edge of the boundary layer in the presence of a magnetic field with lines of force in the
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free stream direction has been studied in [5, 6]. In the opinion of the authors of {5, 6], the constant A in the
presence of a field is related with the corresponding value A, in the absence of a field by the relationship

A:Ao/'\/l +S,

By using self-similar transformations [2, 3], which are in the neighborhood of the forward stagnation
point of a plane or axisymmetric body

y
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and the assumption that pi = p Mo, the Egs, (1) reduce to a system of ordinary differential equations
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where
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The boundary conditions (2) become

Pt == 0,20t n=0,
b (7)

——::Cm.:(-},,:l for 1 — 0.

The system of Eqgs, (4)-(6) with the boundary conditions (7) without taking account of a magnetic field
was solved numerically for a hypersonic flow in [7-9], and for subsonic flow with an external source of radia-
tion and injection of an incompressible fluid, in [10]. An asymptotic solution has been obtained in [11, 12]
for the system (4), {5) without taking account of radiation and a magnetic field under intensive injections
fw > 1). An asymptotic solution of the system (4)-(8) for intensive injection of a foreign absorbing gas
is presented below taking account of the influence of a magnetic field,

1, Following [12] let us introduce the variables

Z:(_df_)z, Fo_l
dn Fu
Then the system (4)-(6) becomes
| &7 L dZ }
S2 P22 oA 1+8(1—-2 z\=0
P2 dF? daF " { [ * ( v Z)]
S R )
o s A7 LT S, (8
2T (Prm z dF)+ T Y

"1 . dC dc
— A i T A )
fa dF(SCVZ dF)Jr dF

The boundary conditions are

Z=0=C=0 for F=1:Z=06=C=1 for F— oo. (9
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Under intensive injection (—f, > 1) the solution of the system (8) can be sought as a power series in
the parameter 1/fy. To the accuracy of terms on the order of 1/fy, there follows from (8)

[ A{p"’ 1as(1—-2yz |
FE® _o 9 _, (11)
dF dF

Equations (11) and the boundary conditions (9) permit the assertion that the temperature and concen-
tration are constant everywhere outside the domain of the stream junction, where terms with higher deriva-
tives turn out to be essential in the general case, Therefore, for —fy; —= in the whole inner domain ( < 0)
it can be considered that 6 = C = 0, i,e,, the gas temperature equals the wall temperature, and the concen-

tration equals the concentration of the injected gas, in the outer domain (f > 0), analogously we have § = C
= l.

Furthermore, the boundary condition Z = 0 for F =1 should be chosen in seeking the stream function,

As is shown below, neglecting the higher derivatives does not result in noticeable error in the whole
internal domain, with the exception of a small neighborhood of the stream junction, Then, under the condi-
tion that the electrical conductivity in the whole inner zone is small (o < o), We obtain from (10)

o AN 2 __ pw .
Z=y2(1—F", ('yo—-p—(l—{-S) )

Therefore

2 2
Q

4,
From (12) it follows from p_(1 +8) = p,, that df/dn =1 at the stream junction (7 = A).

YoM
fefycosm— for A=1; f=f,— for A= 0.5. (12)
w

In the external domain (7 >A), the solution of the motion equation

&f d¥ df \2
L “L A1 (V=0 (13)
dﬂ3+f an [ (dn”
with the boundary conditions
F=0, 1t n=n A1 for o, (14)
dn dn

should be sought,
Evidently the solution of (13) satisfying the boundary conditions (4) is

If p (L +8) = py, then a domain where the transition from df/dn defined by (12) tothe value df/dn=1at
71— % occurs, exists in the neighborhood of 7 = A, Seeking the solution in the neighborhood of the stream
junction is made complicated by the dependence of p and g on 6 and C, As is seen from (5, (6), the main

change in the temperature and concentration occurs at the distances n—A ~1/vPr and n—~A ~ 1/V8c, respec-
tively.

Putting A > max (1,1/VPr, 1/¥8c), it can be considered in determining A in a first approximation
that the stream function in the whole internal domain is described by (12) and inthe external domain by (15).

Therefore, »
A= — Bfu/v0 (B = -;—n for A—1, p=2 for A= 0.5). (16)
It follows from (16) that the boundary of the standoff A in self-similar coordinates diminishes as the
magnetic interaction parameter grows for Oy K O

It should be noted that the stream function described by (12), (15) for A = 0,5, p = p_, S = 0 is an exact
solution of (4). For A =1 neglecting the highest derivative in (4) results in an error in the internal domain



on the order of

l// Pe (sm__l/ pm-)/cosz-n_ L
f pll) fw pu)

Hence, it follows that the influence of viscosity turns out to be neg11g1b1e near the wall and is manij-
fested only in the neighborhood of the stream junction in the domain |n—A| £ (og/Pu)!/%.

2. In the radiation heat conduction approximation [13-15], heating of unit volume because of radiation
dg,/dy can be combined with the heat influx due to molecular heat conduction, and it can be considered that
Pr « 1, The condition for applicability of this approximation is I(dn/dy) <« 1/vPr, where I is the radiation
mean free path, and dy/dn - 1/VPr is the characteristic scale within which the temperature changes.

If the temperature 6, at the stream junction is considered known, then it follows from (5) that the
temperature gradient at the wall equals

A n
(.‘i@_) =6;,/ S exp[—Prj f(n’)dn’]dn. (17)
an /y .
0 [
Assuming that Prf‘zn > 1 and the stream function is determined by (12) in the whole domain 0 <7 <A,
we can obtain
o\ T Pry, (_ B.Prf?, ) 18
(*gy]—)w = 291' l/ ——2 eXp —_YO , ( )

where 5; = 1 for A =1; By =4/3 for A = 0,5,

The location of the stream junction is determined with a relative error on the order of (1/AvPry,)
(1—vy/v), where v is the derivative of the stream function at the stream junction, defined in conformity
with (4), (5). This error originates because the stream function in the domain n—X ~ 1/VPr has a slope ¥
different from the vy, calculated by means of (12) because of the change in density and viscosity.

The exponent of the exponential in (18) is determined to the accuracy of terms on the order of
1/2(1-vy/7).

A model assuming piecewise-constant properties of the medium is too rough to compute the tempera-
ture 6 and concentration C because the main change in the quantities 6 and C occurs in the neighborhood of
the stream junction where it is necessary to know the exact behavior of the stream function in the general
case,

If the change in density is due mainly to the change in temperature, then as is seen from (4) and (5),
for Pr «1 it should be considered that

f=v(n——7»)(vz= g—:[1+8(1—%)]) (19)

in the domain of greatest change in the temperature (|n-A| ¢ 1/VPr),

In the general case, the change in the stream function in the neighborhood of the stream junction is due
to the change in density with temperature and to the influence of viscosity,

A computation of the temperature by using the stream function in the form (19) shows that

g @AYV Pry ) +@[(n—W} Pry |
1+@{AV Pry )

fone o 51)

Therefore the dependence of the density on the coordinate 7 is determined by the argument (n—A)vPr

(20)

.

As has been shown earlier, the influence of the viscosity is manifested in a considerably smaller do-
main [n—A| £ 1, Outside the viscous boundary layer domain, where the main change in density 1 < In
—~A| < 1/¥Pry occurs, the order of magnitude of the discarded terms in (4) can beestimated, Assuming that
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Ty - the stream function in this domain corresponds to (19) in order of
Too / magnitude, it should be considered that the exact solution of (4) will
08 : depend on the same argument as the density, i.e., (n—A)vVPry.

Furthermore, since f ~y(n —A), df/dn ~v, then d*/dn?* ~y vPry, d%
/dn® ~ Pry?, Theninthe domain under consideration

% JV j_:; (%)2~Pr,fj—2; (%)2~(n~%)VW

Hence, it is seen that in the domain of greatest change in tem-
perature the stream function in (4) is almost linear with a coefficient
v determined in conformity with (19),

0 « 4 2 1

Fig.1, Temperature distribu-~

tion for the case Ty,/To = 0.1, It follows from (20) that for intensive injections AVPr,y > 1

A =1, £y =-2:1) by @23) (irst at the interface

approximation); 2) by (23) Gec- i £

ond approximation); 3) by [12]. B(A)=——, (__) = Py (21)
2 dn [, ]/ 2n

In conformity with (18) and (21), the magnitude of the heat flux can be determined approximately as
follows:

— _ Pu APry, ( _ﬁ_l_ 2

d= (=T 32/ oo [~ JEReE ). (22)
1t follows from (22) that as the injection parameter grows, as does also the Prandtl number of the

injected gas, the heat flux at the wall decreases exponentially and if g, < 0, then taking into account that

f‘zw ~v1 +8, will be independent of the magnetic interaction parameter S,

Results of a computation by means of (20) for the case Pr = 1, Ty/T_ = 0.1, A = 1, f, =2 are shown
in Fig.1., The model of piecewise-constant properties which yields a somewhat exaggerated value of A was
used in a first-approximation calculation, Taking into account the temperature distribution obtained, and
therefore, the density also, the value of A in a second approximation is determined by means of (16) with
Py, replaced by {p):

1

= ——— d'
{(p? 7 pdn

Sy

Even in the case when the conditions Pr « 1, —f,, > 1 are not satisfied, a temperature computation
by means of (20) agrees satisfactorily, as is seen from Fig, 1, with the results obtained earlier [12].

3. If the radiation mean free path is commensurate with or exceeds the dimengion of the internal
domain ¢ 3> A), then heating of a gray gas because of radiation for the one-dimensional case and a black wall
is determined, as is known, by a known integral relationship [13, 14],

Under intensive injection of a weakly absorbing gas, the temperature distribution in the inner zone is
due mainly to radiation and convection, Molecular heat conduction exerts influence on the temperature dis-
tribution only in the siream junction domain, In this case, the main temperature drop occurs at the dis-
tances |7—A | ~1/VPry(Pry, ~1). It is assumed that heating of the injected gas and diffusion in the domain
of the stream junction do not alter the radiation mean free path substantially in the internal domain,

If the radiation mean free path satisfies the condition I(dn/dy) > 1/VPr, then radiation from the wall
and from the gas into the whole internal domain can be neglected, Then the above-mentioned integral rela-
tionship becomes

g, = 200,T+E, (T, — 1), (E‘h {(x) = (. exp (— xt)
dy

oJ
1

where T, is the radiation temperature which can be set equal to T, since it is considered that the radiation
mean free path in the external domain satisfies the condition l(dn/dy) < 1/¥ Pr,. (Pr, < 1), The condition of
equality of the normal heat flux components on the interface (yn =A) means that the heat arriving from the

external domain of radiation heat conduction at the inner zone is transported by the molecular heat conduc-
tion and radiation:

dt
tﬂ
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dT dT
— ] =0T+ =% (———) . 23
n(dy)m T ) (23)

Since %, > %y, then the heat transport because of molecular heat conduction can be neglected in the bound-
ary condition (23),

Indeed, %y, @T/dy)y_ /%y @T /dy)yse ~ VAyp/My. Then condition (23) becomes

" do oTh (dy\ [{dy 0w ./ VoA
Up | — = —_— s = - —— . (24)
dn Jare” Te—T, \dg/ \\dn/, o, A
The solution in the internal domain (n > A) can be found by considering the stream function linear (19),

and the temperature on the boundary to be equal to 6,:

8 =0, (1—0)0ln—M) Pr,y]

Hence it follows that

do Pr,v
—_ = 2(1 —8 rt.
( dn )Ho 2 ) 1/ 2

Congidering %, = 16/ chlTi, we obtain an equation to determine 6, from the boundary condition (24):

0, = 39/3¢/1 29— T l(Tew—T,) (g:z<ﬂ’l> ij‘ 3)
\ A

1--32/3¢/V 2% dy

Hence, it is seen that as € increases, the temperature on the interface 6, rises, However, the condi-~
tion for applicability of the radiation heat conduction approximation demands that £ «< 1, Hence 6 cannot
exceed the value 6, ~ 0.8 correspondingto € =1, To solve (25) it is necessary to know the dependence of
gon g, . For small values of Gxthe condition € «< 1 may not be satisfied,

Neglecting molecular heat conduction in the whole internal domain, the energy equation can be re-

presented as
_ede 7 ) _ 24aq,Th )
ra = e [ 1= )] (= ity ) %
The temperature distribution near the surface (1> < A% can be obtained from (26):

o= (1= ]

The heat flux on the wall is determined not only by the radiation flux but also by heat transport by
molecular heat conduction from the gas heated by radiation:

ax,,

g = 20,T [ Ey(t) + E, (t,) ] , @7)

w“p¥m
It is seen from (27) that heat transport because of molecular heat conduction diminishes by a power law as
the injection grows, The total heat flux depends essentially on the temperature on the stream junction
boundary,

NOTATION
P is the density;
Cp is the specific heat;
K is the dynamic viscosity;
L is the characteristic length scale;
Yorms Mr are the coefficients of molecular and radiant heat conduction;
D is the coefficient of diffusion of a binary mixture;
u, v are the longitudinal and normal velocity components, respectively;
P is the pressure;
T is the temperature;
c is the concentration;
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Subscripts

w is the wall;

is the radiation flux;

is the induction of the magnetic field whose lines of force are in the free stream direction
(the magnetic Reynolds number is considered small);

is the electrical conductivity;

is the distance along the surface from the forward stagnhation point of the body;
is the distance along the normal;

is the radius of transverse curvature of the body surface;

is the plane case;

is the axisymmetric case;

is the Reynolds number;

is the Prandtl number;

is the Schmidt number;

is the Stuart number;

is the Stefan—Boltzmann constant;

is the absorption coefficient;

is the radiation mean free path;

is the optical thickness,

A is the stream junction point;
L is the outside the boundary layer.
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